skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Betz, Livia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivated by the residual type neural networks (ResNet), this paper studies optimal control problems constrained by a non-smooth integral equation associated to a fractional differential equation. Such non-smooth equations, for instance, arise in the continuous representation of fractional deep neural networks (DNNs). Here the underlying non-differentiable function is the ReLU or max function. The control enters in a nonlinear and multiplicative manner and we additionally impose control constraints. Because of the presence of the non-differentiable mapping, the application of standard adjoint calculus is excluded. We derive strong stationary conditions by relying on the limited differentiability properties of the non-smooth map. While traditional approaches smoothen the non-differentiable function, no such smoothness is retained in our final strong stationarity system. Thus, this work also closes a gap which currently exists in continuous neural networks with ReLU type activation function. 
    more » « less